Interventional Therapies For Congenital & Structural Heart Disease

Ziyad M. Hijazi, MD, MSCAI, FACC
Professor of Pediatrics
Chair, Department of Pediatrics
Weill Cornell Medical College
&
Director, Sidra Cardiovascular Center of Excellence
Doha-Qatar
Interventional Therapies For Congenital & Structural Heart Disease

Disclosure

Consultant to the following companies:
Occlutech: ASD & PFO Closure devices
NuMED Inc: Balloon Angioplasty/Valvuloplasty Catheters
Colibri Heart Valve: aortic and pulmonic valves
Venus Medtech: Pulmonic valve
Interventional Therapies For Congenital & Structural Heart Disease

Scope of the Problem!

1. CHD: Currently, there are more than one million adult patients with congenital heart disease (un-repaired, repaired, and palliated) in the US

2. SHD: AS patients; MR patients; Afib Patients; etc! Millions of patients.
Interventional Therapies For Congenital & Structural Heart Disease

The Team

1. Interventional Adult Cardiologist-Expertise in CHD
2. Interventional Pediatric Cardiologist
3. Cardiac Surgeon-Expertise in CHD & Valve disease
4. Echocardiographer-Expertise in CHD
5. Anesthesia-Expertise in CHD/SHD
6. Nurses/Techs/Perfusionists/etc
Interventional Therapies For Congenital & Structural Heart Disease

CHD: Based on Physiology

A. **Left-to-right shunting lesions.**
B. **Right-to-left shunting lesions.**
C. **Right heart obstructive lesions.**
D. **Left heart obstructive lesions.**
E. **Post Fontan operation.**
F. **Post Tetralogy repair patients.**
G. **Miscellaneous**
Interventional Therapies For Congenital & Structural Heart Disease

SHD: Based on Anatomy

A. Aortic Valve Stenosis
B. Mitral Valve Regurgitation/Stenosis
C. LAA in Afib Patients
D. Pulmonary Valve Regurgitation/Stenosis
E. Paravalvar leaks
F. Other conditions
Interventional Therapies For Congenital & Structural Heart Disease

Left-to-right shunting lesions

1. Secundum Atrial Septal Defects
2. Patent Foramen Ovale
 - TIA/Stroke
 - Orthodeoxia/Platypnea
3. Patent Ductus Arteriosus
4. Coronary AV Fistulas
5. Congenital muscular VSDs
6. Post infarct VSDs
Interventional Therapies For Congenital & Structural Heart Disease

Secundum ASD

Benefits of Closure
Pre-selection of Patients
Closure Device
Closure Protocol
Results
Interventional Therapies For Congenital & Structural Heart Disease
Interventional Therapies For Congenital & Structural Heart Disease

Benefits of Closure

Most patients with hemodynamically significant ASD are asymptomatic during the 1st decade of life.

By 20y/o, 50% will c/o exertional dyspnea; 90% by 60y/o.

If uncorrected until after 50 y/o, there is a 75% mortality.

High rate of atrial flutter/fibrillation with increasing age.

Correction at an appropriate age avoids CHF, pulmonary hypertension, thromboembolic complications, and atrial arrhythmias.
Interventional Therapies For Congenital & Structural Heart Disease
Interventional Therapies For Congenital & Structural Heart Devices

1. Amplatzer Septal Occluder
2. Gore Devices
3. CardioSeal/StarFlex
4. Cardia Intrasept
5. Occlutech-Figulla Flex II
6. Solysafe
7. Patch Sideris
8. Others
Interventional Therapies For Congenital & Structural Heart Disease

Closure Protocol

Local anesthesia with ICE
R & L Heart Catheterization
RUPV Angiogram (LAO/Cr)
Balloon Sizing
Closure
ICE/Angiogram (RA/PA)
Interventional Therapies For Congenital & Structural Heart Disease
Interventional Therapies For Congenital & Structural Heart Disease
Interventional Therapies For Congenital & Structural Heart Disease

Possible Complications of ASD Closure

- Embolization
- Arrhythmias/CHB
- Thrombus formation
- Air Embolism
- TIA/Stroke
- SBE
- Cobra formation
- Headaches/Migraines
- Erosions/PE/Tamponade/Death
Comparison Between Transcatheter and Surgical Closure of Secundum Atrial Septal Defect in Children and Adults

Results of a Multicenter Nonrandomized Trial

Zhong-Dong Du, MD,* Ziyad M. Hijazi, MD, MPH, FACC,* Charles S. Kleinman, MD, FACC,† Norman H. Silverman, MD, FACC,‡ Kinley Larrt, PhID,¶ for the Amplatzer Investigators

Chicago, Illinois; Orlando, Florida; San Francisco, California; and Minneapolis, Minnesota

OBJECTIVES
This study sought to compare the safety, efficacy and clinical utility of the Amplatzer septal occluder (ASO) for closure of secundum atrial septal defect (ASD) with surgical closure.

BACKGROUND
The clinical utility of a device such as the ASO can only be judged against the results of contemporaneous surgery.

METHODS
A multicenter, nonrandomized concurrent study was performed in 29 pediatric cardiology centers from March 1998 to March 2000. The patients were assigned to either the device or surgical closure group according to the patients' option. Baseline physical exams and echocardiography were performed preprocedure and at follow-up (6 and 12 months for device group, 12 months for surgical group).

RESULTS
A total of 442 patients were in the group undergoing device closure, whereas 154 patients were in the surgical group. The median age was 9.8 years for the device group and 4.1 years for the surgical group (p < 0.001). In the device group, 395 (89.4%) patients had a single ASD; in the surgical group, 124 (80.5%) (p = 0.008) had a single ASD. The size of the primary ASD was 13.3 ± 5.4 mm for the device group and 14.2 ± 6.3 mm for the surgery group (p = 0.099). The procedural attempt success rate was 95.7% for the device group and 100% for the surgical group (p = 0.006). The early, primary and secondary efficacy success rates were 94.8%, 98.5% and 91.6%, respectively, for the device group, and 96.1%, 100% and 89.0% for the surgical group (all p > 0.05). The complication rate was 7.2% for the device group and 24% for the surgical group (P<0.001). The median hospital stay was 0.4 ± 0.3 day for the device group and 3.4 ± 1.2 days for the surgical group (p = 0.001).

CONCLUSIONS
The early, primary and secondary efficacy success rates for surgical versus device closure of ASD were not statistically different; however, the complication rate was lower and the length of hospital stay was shorter for device closure than for surgical repair. Appropriate patient selection is an important factor for successful device closure. Transcatheter closure of secundum ASD using the ASO is a safe and effective alternative to surgical repair. (J Am Coll Cardiol 2002;39:1836–44) © 2002 by the American College of Cardiology Foundation
Interventional Therapies For Congenital & Structural Heart Disease

Left heart obstructive lesions

Aortic Valve Stenosis
Mitral Valve Stenosis (Rheumatic)
Coarctation of The Aorta
Interventional Therapies For Congenital & Structural Heart Disease

Prevalence & Associations

6-8% of CHD
Males more than females
Turner syndrome
Cardiac: BAV; VSD; AS; PDA; Mitral valve disease.
Non Cardiac: Intracerebral aneurysm
Interventional Therapies For Congenital & Structural Heart Disease

Pathogenesis

Reduced anterograde intrauterine flow
Extension of ductal tissue into thoracic aorta

Pathology: medial thickening and intimal hyperplasia forming a ridge. Rarely, inflammation.
Interventional Therapies For Congenital & Structural Heart Disease

ACC/AHA 2008 Guidelines for the Management of Adults With Congenital Heart Disease

A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Develop Guidelines on the Management of Adults With Congenital Heart Disease)

Developed in Collaboration With the American Society of Echocardiography, Heart Rhythm Society, International Society for Adult Congenital Heart Disease, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons

WRITING COMMITTEE MEMBERS
Carole A. Warnes, MD, FRCP, FACC, FAHA, Co-Chair; Roberta G. Williams, MD, MACC, FAHA, Co-Chair; Thomas M. Bashore, MD, FACC; John S. Child, MD, FACC, FAHA; Heidi M. Connolly, MD, FACC; Joseph A. Dearani, MD, FACC*; Pedro del Nido, MD; James W. Fasules, MD, FACC; Thomas P. Graham, Jr, MD, FACC†; Ziyad M. Hijazi, MBBS, MPH, FACC, FSCAI‡; Sharon A. Hunt, MD, FACC, FAHA; Mary Etta King, MD, FACC, FASE§; Michael J. Landzberg, MD, FACC; Pamela D. Miner, RN, MN, NP; Martha J. Radford, MD, FACC; Edward P. Walsh, MD, FACC¶; Gary D. Webb, MD, FACC‖
CLASS I

1. Intervention for coarctation is recommended in the following circumstances:
 a. Peak-to-peak coarctation gradient greater than or equal to 20 mm Hg. (Level of Evidence: C)
 b. Peak-to-peak coarctation gradient less than 20 mm Hg in the presence of anatomic imaging evidence of significant coarctation with radiological evidence of significant collateral flow. (Level of Evidence: C)

ACC/AHA 2008 Guidelines for the management of adults with CHD. JACC 2008;52:e143-263
2. Choice of percutaneous catheter intervention versus surgical repair of native discrete coarctation should be determined by consultation with a team of ACHD cardiologists, interventionists, and surgeons at an ACHD center. *(Level of Evidence: C)*

3. Percutaneous catheter intervention is indicated for recurrent, discrete coarctation and a peak-to-peak gradient of at least 20 mm Hg. *(Level of Evidence: B)*

4. Surgeons with training and expertise in CHD should perform operations for previously repaired coarctation and the following indications:
 a. Long recoarctation segment. *(Level of Evidence: B)*
 b. Concomitant hypoplasia of the aortic arch. *(Level of Evidence: B)*

CLASS IIb

1. Stent placement for long-segment coarctation may be considered, but the usefulness is not well established, and the long-term efficacy and safety are unknown. *(Level of Evidence: C)*
Interventional Therapies For Congenital & Structural Heart Disease

Treatment Options

1. Surgical Repair
2. Balloon Angioplasty
3. Stent Implantation
Interventional Therapies For Congenital & Structural Heart Disease

Surgical Repair

1. E-E Anastomosis
2. Patch Aortoplasty
3. Subclavian Flap!! Not in the adults!
Interventional Therapies For
Congenital & Structural Heart Disease

Outcome of Surgical Repair

1. Very good.
2. Thoracotomy!
3. Complications!
Interventional Therapies For
Congenital & Structural Heart Disease

Balloon Angioplasty

1. Very good option.
2. Not good for long segment coarctation!
3. Results: about 85% success
4. Complications: dissection, aneurysm formation and rupture!
Interventional Therapies For Congenital & Structural Heart Disease

Stents
Over 20+ years of experience, very good results!
But, technically challenging!
Interventional Therapies For
Congenital & Structural Heart Disease

Protocol

GEA
Access from RFA/RFV
Hemodynamics
Angiography
Stent Deployment.....RV rapid pacing vs BIB
Assessment of result
Interventional Therapies For Congenital & Structural Heart Disease
Interventional Therapies For Congenital & Structural Heart Disease
Interventional Therapies For Congenital & Structural Heart Disease

Congenital Cardiovascular Interventional Study Consortium
Interventional Therapies For Congenital & Structural Heart Disease

Procedural Results and Acute Complications in Stenting Native and Recurrent Coarctation of the Aorta in Patients Over 4 Years of Age: A Multi-Institutional Study

Thomas J. Forbes, MD, Swati Garekar, MD, Zahid Amin, MD, Evan M. Zahn, MD, David Nykanen, MD, Phillip Moore, MD, Shakeel A. Qureshi, MD, John P. Cheatham, MD, Makram R. Ebeid, MD, Ziyad M. Hijazi, MD, Satinder Sandhu, MD, Donald J. Hagler, MD, Horst Sievert, MD, Thomas E. Fagan, MD, Jeremy Ringewald, MD, Wei Du, MD, Liwen Tang, MD, MS, David F. Wax, MD, John Rhodes, MD, Troy A. Johnston, MD, Thomas K. Jones, MD, Daniel R. Turner, MD, Carlos A.C. Pedra, MD, and William E. Hellenbrand, MD, Congenital Cardiovascular Interventional Study Consortium (CCISC)

Background: We report a multi-institutional experience with intravascular stenting (IS) for treatment of coarctation of the aorta. Methods and Results: Data was collected retrospectively by review of medical records from 17 institutions. The data was broken down to prior to 2002 and after 2002 for further analysis. A total of 565 procedures were performed with a median age of 15 years (mean = 18.1 years). Successful reduction in the post stent gradient (<20 mm Hg) or increase in post stent coarctation to descending aorta (DAo) ratio of >0.8 was achieved in 97.9% of procedures. There was significant improvement (P < 0.01) in pre versus post stent coarctation dimensions (7.4 mm ± 3.0 mm vs. 14.3 ± 3.2mm), systolic gradient (31.6 mm Hg ± 16.0 mm Hg vs. 2.7 mm Hg ± 4.2 mm Hg) and ratio of the coarctation segment to the DAo (0.43 ± 0.17 vs. 0.85 ± 0.15). Acute complications were encountered in 81/565 (14.3%) procedures. There were two procedure related deaths. Aortic wall complications included: aneurysm formation (n = 6), intimal tears (n = 8), and dissections (n = 9). The risk of aortic dissection increased significantly in patients over the age of 40 years. Technical complications included stent migration (n = 28), and balloon rupture (n = 13). Peripheral vascular complications included cerebral vascular accidents (CVA) (n = 4), peripheral emboli (n = 1), and significant access arterial injury (n = 13). Older age was significantly associated with occurrence of CVAs. A significant decrease in the technical complication rate from 16.3% to 6.1% (P < 0.001) was observed in procedures performed after January 2002. Conclusions: Stent placement for coarctation of aorta is an effective treatment option, though it remains a technically challenging procedure. Technical and aortic complications have decreased over the past 3 years due to, in part, improvement in balloon and stent design. Improvement in our ability to assess aortic wall compliance is essential prior to placement of ISs in older patients with coarctation of the aorta. © 2007 Wiley-Liss, Inc.
Interventional Therapies For Congenital & Structural Heart Disease
Interventional Therapies For Congenital & Structural Heart Disease
Interventional Therapies For Congenital & Structural Heart Disease
Interventional Therapies For
Congenital & Structural Heart Disease

Post Tetralogy Repair Patients

PA abnormalities
 Lung Perfusion Scans
Residual Intracardiac Defects
 ASD/VSD
AP Collaterals
Pulmonary Insufficiency “PPV”.

Interventional Therapies For Congenital & Structural Heart Disease

Percutaneous Valve Insertion/Repair

1. Aortic Valve
2. Pulmonic Valve
3. Mitral Valve
4. Tricuspid Valve
Interventional Therapies For Congenital & Structural Heart Disease

All patients born with Congenital Heart Defects 1.6 M Worldwide

RVOT (22%) 352,000

Pulmonary Stenosis
Tetralogy of Fallot
Truncus Arteriosus
Transposition of the Great Arteries
Double Outlet Right Ventricle (DORV)
Pulmonary Atresia

Non-conduit Patients

Conduit Pt (30%) 105,600
Interventional Therapies for Congenital & Structural Heart Disease

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Annual Potential Candidates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transcatheter Pulmonic Valve Replacement</td>
<td>5,000 – 6,000</td>
</tr>
<tr>
<td>Patent Ductus Arteriosus (PDA)*</td>
<td>5,000 – 7,000</td>
</tr>
<tr>
<td>Atrial Septal Defect (ASD)*</td>
<td>8,000 – 10,000</td>
</tr>
<tr>
<td>Ventricular Septal Defect (VSD)*</td>
<td>5,000 – 8,000</td>
</tr>
<tr>
<td>Patent Foramen Ovale (PFO)*</td>
<td>75,000 – 150,000</td>
</tr>
</tbody>
</table>
Interventional Therapies For Congenital & Structural Heart Disease

Conduit Types

Homograft
Cloth tube conduit – porcine valve mounted into polyester tube
Medtronic Contegra – bovine jugular vein
・ Conduit/valve stenosis is primary failure mode
Interventional Therapies For Congenital & Structural Heart Disease

Unmet Clinical Need

Conduit durability is often limited by resulting stenosis, thrombosis and calcification of the valve causing clinical deterioration and requiring reoperation.

- Mean time to reoperation*:
 - 10.3 years for xenografts
 - 16 years for homografts

- Reoperations associated with increasing mortality**:
 - 4% mortality rate on initial procedure
 - 7% mortality rate on first re-operation
 - 11% mortality rate on second re-operation
 - 13% mortality rate on additional operations

*Tweedale et al. Factors affecting longevity of homograft valves used in RVOT reconstruction for CHD.Circ 2000;102(Suppl):II-130-II-139 at1
Homsen M. et al. Reconstruction of the RVOT with valved biological conduits: 25 years experience with alografts and xenografts.
EurJCardioThorac Surg 2000; 17:924-30

Interventional Therapies For Congenital & Structural Heart Disease

Freedom from homograft dysfunction (Mod or Severe Stenosis or Regurgitation)

Years

Freedom from Failure (%)
Interventional Therapies For Congenital & Structural Heart Disease

Indications For PVR

Severe PR in patients with NYHA class II or III symptoms

If Asymptomatic: Regurgitant fraction >35%; RVEDV >150 ml/m2; RV EF <40%; QRS duration >180 msec

Interventional Therapies For Congenital & Structural Heart Disease

The Melody Valve
Interventional Therapies For Congenital & Structural Heart Disease

The Melody Valve

- Bonhoeffer was the 1st in the world to implant a percutaneous valve in a human! Pediatric Cardiologist!!!!
- Implanted in >8000 patients in the Pulmonic position.
- Bovine jugular vein valve sutured onto a platinum iridium stent
- Using balloon in balloon from NuMED
- Hand crimping stent onto balloons
- Requires 22 Fr delivery sheath.
The Edwards Sapien THV

- Three bovine pericardial valve leaflets
- Stainless steel initially, then cobalt chromium stent frame
- Now available in 20, 23, 26 and 29 mm diameters.
- Height 14-19mm long
- E-sheath: 18-20 Fr
Study Background

Significant pulmonary valve regurgitation (PR) results in:
- Progressive RV dilation & development of ventricular arrhythmias
- RV dysfunction and sudden death

Pulmonic valve implantation at an appropriate age may restore RV function and improve the symptoms.

Early clinical experiences show that transcatheter implantation of bioprosthetic valves may be safely achieved in the pulmonic position.
Interventional Therapies For Congenital & Structural Heart Disease

The COMPASSION Study

COngenital Multicenter trial of Pulmonic vAlve regurgitation
Studying the SAPIEN™ InterventIONal THV

Inclusion Criteria

1. Weight > 35 kg
2. Conduit > 16 mm & < 24 mm
3. Severe PR > 3+ or > 40% regurgitant fraction and or severe PS
4. Subject is symptomatic as evidenced by CP exercise testing
5. Must comply with F/U
6. Subject agrees to come back for F/U
7. Catheterization is feasible
Interventional Therapies For Congenital & Structural Heart Disease

Exclusion Criteria

- 1. Active Infection
- 2. Previously enrolled in this study
- 3. Subject has prosthetic heart valve
- 4. Severe Chest wall deformity
- 5. Leukopenia (<3000)
- 6. Acute or chronic anemia (<9 gm%)
- 7. Platelet count <100,000
- 8. Echo evidence of intracardiac mass/thrombus
- 9. History of or active endocarditis
- 10. Hypersensitivity to aspirin or heparin
- 11. Life expectancy <1 year
Interventional Therapies For Congenital & Structural Heart Disease

Exclusion Criteria

- 12. Obstruction of the central veins
- 13. Positive pregnancy test
- 14. RVOT aneurysm
- 15. Ileofemoral vessel that would preclude 22-24F
- 16. Contraindication to MRI
- 17. Need for concomitant interventional procedure (ASD/VSD)
Interventional Therapies For Congenital & Structural Heart Disease
Interventional Therapies For Congenital & Structural Heart Disease

Miscellaneous

Post Mustard/Senning Operation
Post Arterial Switch Patients.
Systemic Veins Obstruction.
Conduits (RV-PA) Obstructions.
Aortic pseudo aneurysms
Interventional Therapies For Congenital & Structural Heart Disease
Interventional Therapies For Congenital & Structural Heart Disease

SHD
Interventional Therapies For Congenital & Structural Heart Disease

Calcific AS

Indications for Surgical AVR

- Symptomatic patients with severe AS
- Patients with severe AS undergoing CABG (Class I C)
- Patients with severe AS and LV dysfunction (Class IIa-B)

Why is surgical AVR so great?

Because our patients...

1. Live longer
2. Feel better (marked Sx benefit)
3. Have improved LV function
Interventional Therapies For Congenital & Structural Heart Disease

Rules of Engagement

Surgery

tAVR
Interventional Therapies For Congenital & Structural Heart Disease

Indications for Transcatheter AVR

- Symptomatic patients with severe AS who are
 - high risk for surgery
 - Inoperable
- ? Class IIa - B
Interventional Therapies For Congenital & Structural Heart Disease

Who Are The High Risk Patients?

- Octogenarians with multiple co-morbidities (COPD, diabetes, ↑ creatinine, PVD, ↓ LVEF, previous cardiac surgery, and others)
- STS Predicted Risk >10%, ~ Logistic EuroSCORE >30% (~15% operative risk @ 30 days)
- Requires close surgical consultation (significant inter-site variability)

There is no perfect formula-Requires quantitative risk algorithm + thoughtful surgeon/cardiolgoist.
Interventional Therapies For Congenital & Structural Heart Disease

Who is The inoperable Patient?

- Radiation chest wall/heart disease
- Chest wall deformities (severe)
- End-stage COPD
- Cirrhosis with portal hypertension
- Porcelain aorta (CT proven)
- Degenerative neurocognitive dysfunction
- High “frailty” index (qualitative assessment)
- >50% chance of mortality or never leaving a chronic care facility

Even less perfect formula-Surgeon as a gatekeeper
Interventional Therapies For Congenital & Structural Heart Disease

NOT Indicated for Transcatheter AVR

- Low or normal risk patients based on...
 - patient preference
 - referring MD preference
- CAVEAT: There is a subtle middle ground of intermediate risk AS patients (5-15% operative mortality) who may be appropriate candidates based on other factors
- AS with endocarditis or bicuspid valves (?) or requiring Ao repair
The potential AS patients that require treatment

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Population</th>
<th>AS Prevalence</th>
<th>Severe AS</th>
<th>Severe AS 50% with Sx</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-44</td>
<td>125,841,694</td>
<td>0.10%</td>
<td>41,947</td>
<td>20,974</td>
</tr>
<tr>
<td>45-54</td>
<td>41,618,805</td>
<td>0.20%</td>
<td>27,746</td>
<td>13,873</td>
</tr>
<tr>
<td>55-64</td>
<td>29,078,924</td>
<td>0.60%</td>
<td>58,158</td>
<td>29,079</td>
</tr>
<tr>
<td>65-74</td>
<td>18,463,472</td>
<td>1.40%</td>
<td>86,163</td>
<td>43,081</td>
</tr>
<tr>
<td>>75</td>
<td>17,830,513</td>
<td>4.60%</td>
<td>273,401</td>
<td>136,701</td>
</tr>
<tr>
<td>Total</td>
<td>232,833,408</td>
<td>–</td>
<td>487,415</td>
<td>243,708</td>
</tr>
</tbody>
</table>

Based upon the Olmsted County AS prevalence data and US population statistics; more than half of the severe AS patients are >75 years old!
Interventional Therapies For Congenital & Structural Heart Disease

The potential AS patients that require treatment

<table>
<thead>
<tr>
<th>Age</th>
<th>2004 Population</th>
<th>AS Prevalence</th>
<th>Severe AS</th>
<th>Severe AS 50% with Sx</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-44</td>
<td>125,841,694</td>
<td>0.10%</td>
<td>41,947</td>
<td>20,974</td>
</tr>
<tr>
<td>45-54</td>
<td>41,618,805</td>
<td>0.20%</td>
<td>27,746</td>
<td>13,873</td>
</tr>
<tr>
<td>55-64</td>
<td>29,078,924</td>
<td>0.60%</td>
<td>58,158</td>
<td>29,079</td>
</tr>
<tr>
<td>65-74</td>
<td>18,463,472</td>
<td>1.40%</td>
<td>86,163</td>
<td>43,081</td>
</tr>
<tr>
<td>>75</td>
<td>17,830,513</td>
<td>4.60%</td>
<td>273,401</td>
<td>136,701</td>
</tr>
<tr>
<td>Total</td>
<td>232,833,408</td>
<td></td>
<td>487,415</td>
<td>243,708</td>
</tr>
</tbody>
</table>

Based upon the Olmsted County AS prevalence data and US population statistics; the potential AS treatment cohort could exceed 250,000 patients!
At least 30% of patients with severe symptomatic AS are untreated!
Interventional Therapies For Congenital & Structural Heart Disease

Transcatheter Aortic Valve Systems - 1st Generation

- Edwards Aortic Bioprosthesis
 - Balloon expandable stainless steel bioprosthesis
 - Equine ➔ Bovine pericardial valve
 - Unsheathed and sheathed (RetroFlex)
 - Antegrade, retrograde, or trans-apical approach

- CoreValve Revalving™ System
 - Self-expanding nitinol cage bioprosthesis
 - Porcine pericardial valve
 - Sheathed system (21 Fr and 18 Fr)
 - Retrograde (trans-apical) approach
Interventional Therapies For Congenital & Structural Heart Disease

Alain Cribier

April 16, 2002
Interventional Therapies For Congenital & Structural Heart Disease

Edwards THV Clinical Trial Program

> 1000 Patients 2002-2008

Transformal (n=628)
 - Antegrade N=59
 - RECAST n=24
 - REVIVE n=22
 - US Compassionate n=2

Retrograde (n=569)
 - Early First in Man
 - RECAST n=4
 - REVIVE n=4
 - US Compassionate n=7

Transapical (n=457)
 - TRAVERSE n=172
 - REVIVAL II n=40
 - Canadian Special Access n=90
 - US Compassionate n=2
 - PARTNER EU n=67
 - PARTNER US n>200 (>100 TF)
 - SOURCE Registry n=120
 - SOURCE Registry n=86
Interventional Therapies For Congenital & Structural Heart Disease

PARTNER Study Design

Symptomatic Severe Aortic Stenosis

ASSESSMENT: High Risk AVR Candidate
3105 Total Patients Screened

Total = 1058 patients
2 Parallel Trials: Individually Powered

n= 700 High Risk

High Risk TF

1:1 Randomization

TAVI Transfemoral vs Surgical AVR

Primary Endpoint: All Cause Mortality (1 yr) (Non-inferiority)

n= 358 Inoperable

High Risk TA

1:1 Randomization

TAVI Transfemoral vs Surgical AVR

Primary Endpoint: All Cause Mortality over length of trial (Superiority)

ASSESSMENT: Transfemoral Access

High Risk TF

1:1 Randomization

TAVI Transfemoral vs Surgical AVR

Standard Therapy (usually BAV)

Not In Study

ASSESSMENT: Transfemoral Access

High Risk TA

1:1 Randomization

TAVI Transfemoral vs Surgical AVR

Standard Therapy (usually BAV)

Not In Study

PARTNER Study Design

1:1 Randomization

VS

Standard Therapy

1:1 Randomization

VS

Total = 1058 patients
2 Parallel Trials: Individually Powered

n= 700 High Risk

High Risk TF

1:1 Randomization

TAVI Transfemoral vs Surgical AVR

Primary Endpoint: All Cause Mortality (1 yr) (Non-inferiority)

n= 358 Inoperable

High Risk TA

1:1 Randomization

TAVI Transfemoral vs Surgical AVR

Primary Endpoint: All Cause Mortality over length of trial (Superiority)
Transcatheter Aortic-Valve Implantation for Aortic Stenosis in Patients Who Cannot Undergo Surgery

Martin B. Leon, M.D., Craig R. Smith, M.D., Michael Mack, M.D., D. Craig Miller, M.D., Jeffrey W. Moses, M.D., Lars G. Svensson, M.D., Ph.D., E. Murat Tuzcu, M.D., John G. Webb, M.D., Gregory P. Fontana, M.D., Raj R. Makkar, M.D., David L. Brown, M.D., Peter C. Block, M.D., Robert A. Guyton, M.D., Augusto D. Pichard, M.D., Joseph E. Bavaria, M.D., Howard C. Herrmann, M.D., Pamela C. Douglas, M.D., John L. Petersen, M.D., Jodi J. Akin, M.S., William N. Anderson, Ph.D., Duolao Wang, Ph.D., and Stuart Pocock, Ph.D., for the PARTNER Trial Investigators*
Interventional Therapies For Congenital & Structural Heart Disease

PARTNER Endpoints

Primary Endpoint:
- Cohort A: Freedom from death at one year (non-inferiority)
- Cohort B: Freedom from death (superiority)

Key Secondary Endpoints:
- Freedom from MACCE (death, MI, stroke, aortic valve re-intervention at 1, 6, and 12 months)
- Echo assessment of valve function at 1, 6, and 12 months
- Clinical improvement (NYHA functional class and 6 min walk test) at 1, 6, and 12 months
Interventional Therapies For Congenital & Structural Heart Disease

All Cause Mortality

<table>
<thead>
<tr>
<th>Numbers at Risk</th>
<th>TAVI</th>
<th>Standard Rx</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAVI</td>
<td>179</td>
<td>138</td>
</tr>
<tr>
<td>Standard Rx</td>
<td>179</td>
<td>121</td>
</tr>
</tbody>
</table>

HR [95% CI] =
0.54 [0.38, 0.78]
P (log rank) < 0.0001
Interventional Therapies For Congenital & Structural Heart Disease

All Cause Mortality

Δ at 1 yr = 20.0%
NNT = 5.0 pts

<table>
<thead>
<tr>
<th>Months</th>
<th>Standard Rx</th>
<th>TAVI</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>30.7%</td>
<td>30.7%</td>
</tr>
<tr>
<td>12</td>
<td>50.7%</td>
<td>50.7%</td>
</tr>
<tr>
<td>18</td>
<td>60.7%</td>
<td>60.7%</td>
</tr>
<tr>
<td>24</td>
<td>70.7%</td>
<td>70.7%</td>
</tr>
</tbody>
</table>

Numbers at Risk

<table>
<thead>
<tr>
<th></th>
<th>TAVI</th>
<th>Standard Rx</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>179</td>
<td>179</td>
</tr>
<tr>
<td>6</td>
<td>138</td>
<td>121</td>
</tr>
<tr>
<td>12</td>
<td>122</td>
<td>83</td>
</tr>
<tr>
<td>18</td>
<td>67</td>
<td>41</td>
</tr>
<tr>
<td>24</td>
<td>26</td>
<td>12</td>
</tr>
</tbody>
</table>
Interventional Therapies For Congenital & Structural Heart Disease

KCCQ-Summary: Excellent Outcome *

- TAVI
- Control

* Excellent Outcome = Alive and KCCQ-Summary Score improved ≥ 20 points vs. baseline

P <0.001 for all time points
Conclusions - 1

In patients with severe AS and symptoms, who are not suitable candidates for surgery…

- Standard therapy (including BAV in 83.8% of pts) did not alter the dismal natural history of AS; all-cause and cardiovascular mortality at 1 year was 50.7% and 44.6% respectively.
- Transfemoral balloon-expandable tAVR, despite limited operator experience and an early version of the system, was associated with acceptable 30-day survival (5% after randomization in the intention-to-treat population).
• tAVR was superior to standard therapy, markedly reducing the rate of...
 - all-cause mortality by 46%, $P < 0.0001$, NNT = 5.0 pts
 - cardiovascular mortality by 61%, $P < 0.0001$, NNT = 4.1 pts
 - all-cause mortality and repeat hospitalization
 - hierarchical (FS method), $P < 0.0001$
 - non-hierarchical (KM analysis) by 54%, $P < 0.0001$, NNT = 3.4 pts
Interventional Therapies For Congenital & Structural Heart Disease

Conclusions - 3

• tAVR improved cardiac symptoms (NYHA class, P < 0.0001) and six minute walking distance (P = 0.002), after 1-year follow-up

• tAVR resulted in more frequent complications at 30 days, including...
 - major vascular complications, 16.2% vs. 1.1%, P < 0.0001
 - major bleeding episodes, 16.8% vs. 3.9%, P < 0.0001
 - major strokes, 5.0% vs. 1.1%, P = 0.06
Conclusions - 4

- Serial echocardiograms in tAVR patients indicated...
 - reduced mean gradients (P < 0.0001) which were unchanged during 1-year FU
 - frequent paravalvular AR, which was usually trace or mild (~90%), remained stable during 1-year FU, and rarely required further Rx.
Interventional Therapies For Congenital & Structural Heart Disease

PARTNER Study Design

Symptomatic Severe Aortic Stenosis

ASSESSMENT: High-Risk AVR Candidate 3,105 Total Patients Screened

Total = 1,057 patients

2 Parallel Trials: Individually Powered

N = 699

High Risk

Yes

ASSESSMENT: Transfemoral Access

N = 244

Transfemoral (TF)

1:1 Randomization

N = 179

TF TAVR

Primary Endpoint: All-Cause Mortality at 1 yr (Non-Inferiority)

VS

AVR

No

Transapical (TA)

N = 248

TA TAVR

N = 104

AVR

N = 103

N = 244

Inoperable

N = 358

Yes

ASSESSMENT: Transfemoral Access

N = 179

TF TAVR

Primary Endpoint: All-Cause Mortality Over Length of Trial (Superiority)

Co-Primary Endpoint: Composite of All-Cause Mortality and Repeat Hospitalization (Superiority)

VS

Not In Study

AVR

N = 179

Standard Therapy

VS

N = 104

TA TAVR

N = 103

AVR

N = 248

N = 244

3,105 Total Patients Screened

2 Parallel Trials: Individually Powered

N = 699

N = 358
Interventional Therapies For Congenital & Structural Heart Disease

Study Flow

Randomized = 699 patients

- **Transfemoral**: n = 492
 - TAVR (244)
 - 30 Days (236)
 - Dead = 8
 - Withdrawal = 0
 - 1 Year (189)
 - Dead = 46
 - Withdrawal = 1
 - AVR (248)
 - 30 Days (223)
 - Dead = 15
 - Withdrawal = 10
 - 1 Year (168)
 - Dead = 47
 - Withdrawal = 8

- **Transapical**: n = 207
 - TAVR (104)
 - 30 Days (100)
 - Dead = 4
 - Withdrawal = 0
 - 1 Year (73)
 - Dead = 26
 - Withdrawal = 0
 - LTFU = 1
 - AVR (103)
 - 30 Days (92)
 - Dead = 7
 - Withdrawal = 4
 - 1 Year (68)
 - Dead = 20
 - Withdrawal = 3
 - LTFU = 1

42 Patients not treated as assigned
Primary Endpoint: All-Cause Mortality at 1 Year

HR [95% CI] = 0.93 [0.71, 1.22]
P (log rank) = 0.62

<table>
<thead>
<tr>
<th>No. at Risk</th>
<th>Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAVR</td>
<td>348</td>
</tr>
<tr>
<td>AVR</td>
<td>351</td>
</tr>
</tbody>
</table>
Interventional Therapies For Congenital & Structural Heart Disease

All-Cause Mortality
Transfemoral (N=492)

HR [95% CI] = 0.83 [0.60, 1.15]
P (log rank) = 0.25

<table>
<thead>
<tr>
<th></th>
<th>No. at Risk</th>
<th>Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAVR</td>
<td>244</td>
<td>0</td>
</tr>
<tr>
<td>AVR</td>
<td>248</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>215</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>188</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>119</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>59</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>215</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>188</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>109</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>56</td>
<td>18</td>
</tr>
</tbody>
</table>
Conclusions (1)

- The primary endpoint of the trial was met:
 - In patients with aortic stenosis at high risk for operation, TAVR was non-inferior to AVR for all-cause mortality at 1 year (24.2% vs. 26.8%, p=0.001 for non inferiority)
 - Transfemoral TAVR subgroup was also non-inferior to AVR (p=0.002 for non-inferiority)

- Death at 30 days was lower than expected in both arms of the trial:
 - TAVR mortality (3.4%) was the lowest reported in any series, despite an early generation device and limited previous operator experience
 - AVR mortality (6.5%) was lower than the expected operative mortality (11.8%)
Conclusions (2)

• Both TAVR and AVR were associated with important but different peri-procedural hazards:
 – Major strokes at 30 days (3.8% vs. 2.1%, \(p=0.20 \)) and one year (5.1% vs. 2.4%, \(p=0.07 \)) and major vascular complications were more frequent with TAVR (11.0% vs. 3.2%, \(p<0.001 \))
 – Major bleeding (9.3% vs. 19.5%, \(p<0.001 \)) and new onset atrial fibrillation (8.6% vs. 16.0%, \(p<0.001 \)) were more frequent with AVR

• TAVR and AVR are both acceptable therapies in these high-risk patients; differing peri-procedural hazards should influence case-based decision-making
Conclusions (3)

- Symptom improvement (NYHA class and 6-min walk distance) favored TAVR at 30 days and was similar to AVR at one year.

- Echo findings indicate:
 - Small hemodynamic benefit with TAVR vs. AVR at 1 year (mean gradient $p=0.008$, AVA $p=0.002$).
 - Increased para-valvular regurgitation associated with TAVR ($p<0.001$).

- Preliminary subgroup analyses should be interpreted cautiously:
 - Possible TAVR benefit in women and patients without prior CABG.
Interventional Therapies For Congenital & Structural Heart Disease

CoreValve

CoreValve US Pivotal Trial
Extreme Risk Iliofemoral Study Results

Jeffrey J. Popma, MD
On Behalf of the CoreValve US Clinical Investigators
Interventional Therapies For Congenital & Structural Heart Disease

Other Valves

1. Direct Flow
2. Portico
3. Lotus
4. Others
Interventional Therapies For Congenital & Structural Heart Disease

Mitral Paravalvar Leaks
Interventional Therapies For Congenital & Structural Heart Disease

Background

1. Uncommon! 1%/patient-year.
2. Most commonly the mitral valve
3. Multifactorial etiology
4. Clinical significance: heart failure & hemolysis
5. Medical therapy: transfusions
6. Surgery
7. Device closure
Interventional Therapies For Congenital & Structural Heart Disease

Surgery

1. Operative mortality 6.6%! Repeat operations mortality 13%, 15%, 37% for 1st, 2nd, and 3rd operations.
2. Stroke risk of 5.1%
3. Actuarial survival at 10 yrs 30%
4. Recurrence 22%
Device Closure

1. Success (mild or no residual regurgitation) 81% in 16 patients. No mortality, but stroke, perforation, embolization, arrhythmias
2. Devices used: PDA devices, ASD/VSD/vascular plugs/coils
Interventional Therapies For Congenital & Structural Heart Disease Devices
Interventional Therapies For Congenital & Structural Heart Disease

AMplatz Vascular Plug

AMplatz Vascular Plug II

AMplatz Vascular Plug III

AMplatz Vascular Plug IV
Interventional Therapies For Congenital & Structural Heart Disease

Occlutech PVL Devices
Treatment of Paravalvar Mitral Leaks

1. Retrograde approach.
2. Anterograde approach
3. Trans-apical
Interventional Therapies For Congenital & Structural Heart Disease
Interventional Therapies For Congenital & Structural Heart Disease
Interventional Therapies For Congenital & Structural Heart Disease

(a) Guidewire from arterial side
(b) Guidewire from arterial side

Snare from venous side
Snare out to femoral access
Interventional Therapies For Congenital & Structural Heart Disease

Trans-Apical
Interventional Therapies For Congenital & Structural Heart Disease
Interventional Therapies For
Congenital & Structural Heart Disease

Case-Occlutech Mitral PVL
Conclusions

Mitral paravalvar leak can be done percutaneously via endovascular technique or via trans-apical approach. New devices [lesion-specific] (Amplatzer vascular plug-III) and (Occlutech PVL devices) have increased the closure rates.
Conclusions

Currently, there are more adults than children in the US living with CHD. Such patients have various needs.

SHD Intervention can be carried out for various conditions with low risk and very high success rate. The future is very promising for percutaneous valve insertion/repair.